With the world’s population expected to reach 10 billion people by 2030, according to United Nations estimates, agricultural biotech is poised to make a major contribution to the enormous increase in food needed to feedhumanity. Indeed, some estimates predict that the world’s food supply will have to double to keep pace with this increase in population. Biotech based foods, biopesticides, and plant and veterinary disease diagnostics are some of the areas of application of biotechnology in agriculture. These products and methods are used to increase crop yields, decrease required input resources (e.g., water and fertilizer) and create environmentally friendly pest control methods.
Rather than rely on the traditional but more costly and inefficient methods of crossbreeding and hybridization, farmers now use biotechnology techniques to improve crop yields and enhance the quality of food products. These techniques are more precise and selective in that single genes with known and desired characteristics can now be moved to a plant, making the plant’s growth characteristics much more predictable. In addition, depending on the gene inserted – often from a bacterium – the plant will also be hardier and more resistant to diseases and pests. In fact, transgenic or genetically modified varieties of soybeans, corn, cotton, canola, papaya, rice, tomatoes, potatoes, and grapes are already on supermarket shelves.
Based on microorganisms, biopesticides are toxic to targeted pests and are able to control pest populations that have developed resistance to standard chemical pesticides. One example is the Bt (bacillus thuringiensis) bacterium, which is lethal to the European corn borer, an insect responsible for $1.2 billion in crop damage in the U.S. annually. Biotechnology techniques are also being used to enhance the tolerance of plants to herbicides, which will kill the weeds that often grow alongside crop plants but don’t harm the plant. This is useful because traditional sprayed herbicides are expensive, reduce crop yields and are not environmentally friendly.
Biotechnology has improved the nation’s livestock by enhancing animal health and productivity. Cattle, pigs, and salmon are some examples of animals that have been genetically transformed. Within this decade, we can expect poultry that can produce eggs having lower cholesterol and cows that can produce lower-lactose milk.
Veterinary disease diagnostics help treat and prevent disease in animals. Improved quality of feed helps meet the dietary needs of livestock. Animals and plants are also being used as factories for producing pharmaceuticals and chemicals. The two immune system proteins, interferon and interleukin-2, are made naturally in cattle. Potatoes and bananas have been used to produce vaccines to treat a variety of diseases, including cholera, hepatitis B, and food poisoning bacteria. Such plant-based pharmaceuticals are much more costeffective to produce and distribute than traditional counterparts. They can,therefore, become more widely available to both developed and developing countries.
Rather than rely on the traditional but more costly and inefficient methods of crossbreeding and hybridization, farmers now use biotechnology techniques to improve crop yields and enhance the quality of food products. These techniques are more precise and selective in that single genes with known and desired characteristics can now be moved to a plant, making the plant’s growth characteristics much more predictable. In addition, depending on the gene inserted – often from a bacterium – the plant will also be hardier and more resistant to diseases and pests. In fact, transgenic or genetically modified varieties of soybeans, corn, cotton, canola, papaya, rice, tomatoes, potatoes, and grapes are already on supermarket shelves.
Based on microorganisms, biopesticides are toxic to targeted pests and are able to control pest populations that have developed resistance to standard chemical pesticides. One example is the Bt (bacillus thuringiensis) bacterium, which is lethal to the European corn borer, an insect responsible for $1.2 billion in crop damage in the U.S. annually. Biotechnology techniques are also being used to enhance the tolerance of plants to herbicides, which will kill the weeds that often grow alongside crop plants but don’t harm the plant. This is useful because traditional sprayed herbicides are expensive, reduce crop yields and are not environmentally friendly.
Biotechnology has improved the nation’s livestock by enhancing animal health and productivity. Cattle, pigs, and salmon are some examples of animals that have been genetically transformed. Within this decade, we can expect poultry that can produce eggs having lower cholesterol and cows that can produce lower-lactose milk.
Veterinary disease diagnostics help treat and prevent disease in animals. Improved quality of feed helps meet the dietary needs of livestock. Animals and plants are also being used as factories for producing pharmaceuticals and chemicals. The two immune system proteins, interferon and interleukin-2, are made naturally in cattle. Potatoes and bananas have been used to produce vaccines to treat a variety of diseases, including cholera, hepatitis B, and food poisoning bacteria. Such plant-based pharmaceuticals are much more costeffective to produce and distribute than traditional counterparts. They can,therefore, become more widely available to both developed and developing countries.